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Biological rhythms and task allocation in ant colonies
Biplabendu Das1 and Deborah M Gordon1

Task allocation in ant colonies, mediated by social interactions, 
regulates which individuals perform which task and when they 
are active, in response to the current situation. Many tasks are 
performed in a daily temporal pattern. An ant’s biological clock 
depends on the patterns of gene expression that are regulated 
using a negative feedback loop which is synchronized to the 
earth’s rotation by external cues. An individual’s biological 
clock can shift in response to social cues, and this plasticity 
contributes to task switching. Daily rhythms in individual ant 
behavior combine via interactions within and across task 
groups to adjust the collective behavior of colonies. Further 
work is needed to elucidate how the social cues, which lead to 
task switching, influence the molecular mechanisms that 
generate clock outputs associated with each task and 
to investigate the evolution of temporal patterns in task 
allocation in relation to ecological factors.
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Introduction
In social insect colonies, workers perform most of the 
colony’s tasks. This is organized without any central 
control. Task allocation is the process that determines 
which individual performs which task and which in-
dividuals are actively performing each task at a given 
moment [1,2]. Task allocation allows the colony to adjust 
to changing conditions outside the nest, such as weather 
and food availability, and inside it, such as the amount of 
brood and demand for nest maintenance [3].

Task allocation arises from interactions among workers 
and their surroundings. A worker’s location in the nest 

influences which other workers it is likely to encounter 
[4–6]. A common pattern in ants and honeybees is that 
younger workers care for the brood inside the nest, while 
older ones leave the nest to forage. Both location inside 
the nest and the worker’s age tend to be associated with 
the task an ant performs [7–9].

The daily temporal pattern of tasks performed by a 
colony, which depends on the circadian clocks of in-
dividual ants, influences which individuals interact and 
where they interact. The circadian or near 24-hour 
rhythms in physiology and behavior allow organisms to 
adapt to the predictable environmental fluctuations that 
are caused by the earth’s rotation around its axis [10–13].

The circadian clock is the molecular machinery that pro-
duces these daily rhythms and is found in animals from 
insects to mammals (reviewed in [14,15]; Figure 1). Circa-
dian entrainment is the synchronization of the phase and 
periodicity of this internal machinery, driving physiological 
and behavioral rhythms, to external cues that show pre-
dictable 24-hour oscillations. An organism’s clock can syn-
chronize to rhythms in biotic cues such as food availability, 
and abiotic cues, such as light and temperature.

Social cues are a strong entrainment signal for the cir-
cadian clocks of social insects. In honeybees, when 
newly eclosed workers were presented with social cues, 
either colony odor or substrate vibrations, and conflicting 
light-dark cycles, they synchronized their endogenous 
clocks to the social cues [16,17].

In ants, social contacts are sufficient to synchronize the 
endogenous clock that drives daily rhythms in the loco-
motory patterns of workers [18]. In laboratory experiments 
with the carpenter ant Camponotus paria, workers housed 
in constant darkness were visited by conspecifics kept 
under oscillating light-dark cycles. The host ants kept in 
the dark synchronized their circadian clocks to the light- 
dark cycles experienced only by the visiting ants [18].

The social regulation of the ant’s circadian clock is prob-
ably mediated by olfactory and mechanosensory pathways 
that affect neurotransmitter activity. Dopamine, a biogenic 
amine, functions as a neurohormone and plays a role in 
synchronizing the insect clock through G-protein coupled 
receptors or GPCRs (Figure 1 [19]). The same receptor 
class is linked to the behavioral plasticity that leads ants to 
switch tasks in response to current colony needs (reviewed 
in [20]).
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Figure 1 summarizes our hypothesis for how the biological 
clock of ants might regulate the temporal patterns of ac-
tivity. The cellular clock of ants can be synchronized or 
entrained by rhythmic, predictable changes in their local 
environment, including social interactions and abiotic cues. 
Our knowledge of the molecular underpinnings of the ant 
clock is limited [21-24] in contrast with our detailed un-
derstanding of the molecular biology circadian clocks in two 
model systems: the fruit fly Drosophila melanogaster and the 
mouse Mus musculus. The studies of flies and mice have 
shown that the cellular clocks of both animals have the same 
architecture, a negative feedback loop, although some of the 
proteins that make up the core loop differ among species 
(reviewed in [14]). 

The cellular feedback loop, in the absence of external 
rhythmic cues, takes nearly 24 hours to complete one 
cycle. However, the cellular clock can entrain or syn-
chronize the periodicity and phase of its internal rhythm 
by external cues that repeat every 24 hours, such as day 

length and food availability. In flies, the loop includes 
the heterodimer activator complex CLOCK-CYCLE 
(CLK-CYC or BMAL1-CLOCK in mammals) that 
rhythmically binds to the E-box site in the promoter 
region of several genes [14]. This activates the tran-
scription of those genes, including the repressor gene 
period, as well as several others that regulate daily tem-
poral patterns in physiology and behavior [14] (Figure 1). 
Once translated, PER heterodimerizes with TIMEL-
ESS (CRYPTOCHROME in mammals) and translocates 
into the nucleus to inhibit the CLK-CYC activator 
complex, thereby repressing period expression [25,26]. 
This transcription-translation feedback loop (TTFL) is 
facilitated by kinases; the casein kinases CK1 and CK2, 
along with the glycogen synthase kinase SHAGGY 
(SGG), are required for the rhythmic nuclear re-entry of 
period [27] (Figure 1). The daily temporal patterns of 
period expression show 24-hour oscillations in the brains 
of several animals, including foraging bees [28] and 
ants [21,22]. 

Figure 1  
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Biological clocks of ants and temporal patterns in task allocation. The figure summarizes how biological clocks regulate the temporal pattern of activity 
in ant colonies. The gray arrows show steps in the process. The red arrows trace the hypothesized TTFL in gene expression. The TTFL is a negative 
feedback loop involving the protein complex CLK-CYC shown in yellow that activates gene expression of several genes; the protein products of some 
can repress the activity of CLK-CYC. The repressor proteins PER and mCRY ants are shown in white. The nuclear re-entry of PER and mCRY depends 
on the activity of kinases, some of which are shown here in orange (CK1a, SGG, CK2). * labels a G-protein coupled receptor, shown in purple, located 
on the cell membrane; dotted lines represent the nuclear membrane. The figure in the top right shows the daily temporal patterns in the expression of 
several hundred genes, including period, that show a 24-hour rhythm in the brains of Camponotus floridanus foragers (in red), and an 8-hour rhythm in 
nurses (in blue). The y-axis shows standardized gene expression and the x-axis time, in 2-hour increments, with 0–12 hours as the light phase and 
12–24 hours as the dark phase of the day.   
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The circadian clocks of ants are similar to those of 
Drosophila in their location in the brain, and in the patterns 
of neuronal innervation that the clock uses to receive input 
and drive rhythmic behavior [29]. However, the circadian 
clocks of social insects and fruit flies differ. Unlike Droso-
phila, ants and honeybees do not possess the clock gene 
timeless that makes up the negative arm of the feedback 
loop. Instead, ants and honeybees have a mammalian-like 
cryptochrome (mCRY) gene (Figure 1; [22,30]). 

Individuals vary in the phase, amplitude, and period 
length with which clock-controlled processes oscillate. 
Workers within a colony of the carpenter ant, C. ru-
fipes vary greatly in the periodicity with which their 
movement-rest or locomotory patterns oscillate, including 
ultradian (period < 20 hours), circadian (between 20 hours 
and 28 hours), and to a lesser degree infradian (> 28 
hours) oscillations [31]. The individual variation and 
within-individual plasticity in the phase of the clock are 
well studied in humans. For example, the phase or pre-
ferred timing of sleep-wake cycles is a clock-controlled 
process that varies widely across individuals but shows 
consistent changes with age; teenagers wake up relatively 
late in the day, and elderly people relatively early. 

Here we outline past research, summarized in Table 1, 
that examines how the plasticity of the ant clock is linked 
to task allocation. We consider the following topics:  

● Circadian rhythm and environmental cues in brood 
care inside the nest.  

● Circadian rhythms in tasks outside the nest.  
● Plasticity of daily rhythms in foraging. 
● Molecular links between the plasticity of the circa-

dian clock and task allocation. 

Circadian rhythm and environmental cues in 
brood care inside the nest 
The temporal patterns produced by an ant’s biological 
clock change in response to social cues. In the ant 
Diacamma sp. (putative species indicum), isolated nurses 
show circadian rhythms in locomotion [55]. However, 
Diacamma nurses kept with larvae and eggs, though not 
those kept with pupae, showed a weaker circadian 
rhythm in locomotion; the strength of circadian rhythm 
was measured as the power of fitting a circadian wave-
form onto the movement patterns of the ants. In a group 
setting, the presence of circadian locomotion in a 

Table 1 

Studies in ants exploring the links between biological rhythms and task allocation.      

Topic explored Ant species studied Where? Reference  

The circadian rhythm and environmental 
cues in brood care 

Camponotus mus, C. rufipes Lab [32-34] 
Pogonomyrmex salinus Lab, Field [35] 
Solenopsis invicta Field [36] 

Daily rhythms in tasks outside the nest Linepithema humile Field [37] 
Formica sublucida, F. fossaceps, F. sanguinea subnuda Lab [38] 
Atta cephalotes Field [39] 
Acromyrmex lobicornis, A. striatus Field [40] 
Pogonomyrmex barbatus, P. californicus 
P. rugosus, P. desertorum, P. maricopa 

Field [41] 

Pogonomyrmex montanus, P. subnitidus, P. rugosus Field [42] 
Solenopsis invicta Lab [43] 
Camponotus floridanus Lab [23.] 
Camponotus rufipes Lab [31] 
Diacamma sp. Field [44] 
Dinoponera quadriceps Field [45,46] 
Monomorium orientale Lab [47] 
Myrmica punctiventris, M. emeryana, Prenolopis impairs, Formica 
subsericea, Aphaenogaster rudis, Tapinoma sessile, Lasius alienus, 
Camponotus ferrugineus, Leptothorax curvispinosus 

Field [48] 

The plasticity of daily rhythms in foraging Pogonomyrmex occidentalis Field [49,50] 
Pogonomyrmex barbatus Field [51] 
Pogonomyrmex californicus, P. rugosus, Veromessor pergandei Field [52] 
Dinoponera quadriceps Field [45] 
Formica pratensis, F. polyctena Field [53] 

Molecular links between the plasticity of the 
circadian clock and task allocation 

Pogonomyrmex occidentalis Lab [21] 
Solenopsis invicta Lab [43] 
Pogonomyrmex barbatus Lab [24] 
Camponotus floridanus Lab [23] 
Temnothorax longispinosus Lab [54]   
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Diacamma worker depends on its own age and previous 
task experience, the age and task experience of the ant it 
interacts with, and the group size. Fujioka et al. [56] 
continuously tracked the movement-rest patterns of in-
dividual Diacamma ants that were housed in groups of up 
to five ants. Interactions between young, previously 
brood tending and old, previously foraging workers of 
Diacamma reduced circadian rhythm in patterns of 
movement and rest in both age groups, but young 
workers retained their rhythms if interacting only with 
young workers. In a subsequent study, Fujioka et al. [57] 
tracked larger groups (88–194 ants) of Diacamma ants 
and found that both young and old workers did not show 
24-hour rhythms in locomotion, indicating that colony 
size influences the temporal patterns of locomotion. 

Task performance also shows daily rhythms. In some ant 
species, nurses regulate the brood’s temperature by 
moving it to higher temperatures during the day and 
back to lower temperatures later in the day or at night. 
For example, when laboratory colonies of the carpenter 
ant C. mus [32] are provided with a thermal gradient and 
oscillating 12∶12 hours of light-dark cycles, the nurse 
workers move brood to around 31ºC in the middle of the 
day (light period), and eight hours later move it back to 
around 28ºC [32]. This daily rhythm of brood translo-
cation in C. mus is linked to the development of brain 
regions in larvae and pupae that are related to sensory 
processing and learning ability in adult ants [33]. This 
daily routine of two brood translocations, one at mid-day 
and another eight hours later, persisted even in constant- 
light or constant-dark conditions, suggesting that tem-
perature preference in C. mus nurses is a clock-controlled 
process [58]. The brood movement by nurses ceased 
when the nest surface temperature was adjusted to 
warmer temperatures by day and cooler temperatures at 
night, demonstrating that the behavior depends on 
the circadian rhythms in temperature [34]. 

Species differ in response to daily rhythms in tempera-
ture. Unlike C. mus, brood translocation does not occur in 
C. rufipes colonies. However, the nurse ants of C. rufipes, 
like C. mus, show a circadian rhythm in thermal sensi-
tivity. The brood movement can be experimentally in-
duced by changing the nest surface temperatures. The 
temperature thresholds at which nurses move brood 
changed predictably over a day, at different thresholds 
for the two species [34]. These differences may be as-
sociated with the ecology of each species: C. rufipes 
mostly inhabits sub-tropical and tropical regions, with a 
narrow range of temperature fluctuations, while C. mus is 
also found in temperate climates that show a broader and 
harsher range of temperature fluctuations. Field studies, 
one in the harvester ant Pogonomyrmex salinus [35] and 
the other in the red imported fire ant Solenopsis invicta  
[36], further indicate that the location and timing of 
brood translocation depend on thermal conditions. 

Daily rhythms in outside nest tasks 
Ant colonies perform many tasks outside the nest, in-
cluding foraging, searching and removing refuse. Many 
studies have demonstrated temporal patterns in exterior 
tasks (Table 1). Temporal patterns in task performance 
differ among species that respond to different rhythmic 
abiotic cues [59]. Species differences in daily foraging 
patterns can allow species to coexist through temporal 
partitioning [60]. For example, in an ant community in a 
temperature woodland, different species partition fora-
ging activity on daily and seasonal scales [48]. Similarly, 
in a desert habitat, a comparative study of five harvester 
ant species showed that while in all species, foraging is 
preceded by a daily peak in midden work and, usually, 
patrolling [41], all show different temporal patterns in 
the number of ants actively performing nest main-
tenance, patrolling, midden work, and foraging outside 
the nest [41]. 

Plasticity of daily rhythms in foraging 
Colonies within a species vary in their daily temporal 
patterns of foraging [48,61]. This variation is associated 
with genetic diversity among workers in the colony. In 
the western harvester ant Pogonomyrmex occidentalis, co-
lonies that began foraging earlier in the day showed 
greater genetic diversity among workers [49]. 

Daily rhythms in foraging outside the nest have been 
observed in many ant genera [41,37–40,42,43,23,44]. 
Although most studies have focused on the circadian or 
near 24-hour rhythms in foraging patterns, co-existing 
circadian, ultradian (< 20 hours), and infradian (> 28 
hours) rhythms have been detected in the foraging ac-
tivity of two red wood ant species, Formica pratensis and 
F. polyctena, studied in the field [53]. 

The daily temporal pattern of foraging is plastic, shifting 
in response to changing colony needs. For example, in 
the red harvester ant P. barbatus, the daily temporal 
pattern of foraging activity changes in response to an 
increased demand for workers in a different task. These 
changes vary with colony age, which is linked to colony 
size and reproductive status [51]. 

The daily temporal pattern of foraging activity also 
changes with the season. For example, the colonies of P. 
occidentalis that foraged for a short duration in the spring 
increased the duration of foraging in August. [50]. Seasonal 
changes in the foraging activity are probably associated 
with changes in the rhythmic properties, such as phase, 
amplitude, or periodicity, of the ants’ circadian clock. A 
common method to assess rhythmic state is to characterize 
the daily rhythms in the expression of core clock genes, 
such as period. In P. occidentalis foragers, period expression 
shows circadian oscillation in both fall and spring, but with 
a different phase [21]. The expression of the period gene 
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shows a dusk peak in spring and a dawn peak in fall, even 
when kept without oscillating abiotic cues [21]. 

Seasonal or circannual rhythms in colony foraging be-
havior have been observed in other desert harvester ant 
species [52] as well as in tropical species, Dinoponera 
quadriceps [45]. The harvester ants collect seeds that 
remain on the ground until collected, so there is no 
circadian rhythm in food availability. However, the dry 
conditions in the desert, which set the risk of water loss 
for foraging ants, show 24-hour fluctuations and seasonal 
changes. By contrast, D. quadriceps engages in solitary 
foraging and hunts live ground-dwelling organisms  
[62,63]. The temporal patterns of foraging in D. quad-
riceps might be shaped by the temporal patterns in food 
availability. 

Molecular links between plasticity of the 
circadian clock and task allocation 
Daily temporal fluctuations in gene expression inside an 
ant’s brain depend on its task and the temporal patterns 
in activity associated with that task. In the fire ant 
Solenopsis invicta, colony foraging over 24 hours was 
correlated with the expression of foraging in forager 
brains [43]. The foraging gene is associated with task 
allocation in honeybees as well [64], suggesting that the 
role of foraging is probably conserved across eusocial 
Hymenoptera. 

Task behavior is associated with genome-wide changes 
over 24 hours in the transcriptome. For example, for-
agers and nurses differ in the number and identity of 
genes whose expression shows daily oscillations in the 
ant brain. Bulk-mRNA sequencing of C. floridanus for-
ager and nurse brains showed that foragers’ brains had 
about three times as many genes that showed a 24- 
hour rhythm in expression as did nurses’ brains [23]. 
Similarly, in honeybees, the set of genes with circadian 
rhythms was reduced in nurses relative to foragers [65]. 
Such differences between task groups in gene expres-
sion may be regulated by epigenetic processes [54]. The 
circadian foraging pattern of Temnothorax longispinosus is 
lost when the workers are fed an inhibitor of histone 
acetyltransferases [54]. Histone acetylation regulates the 
opening or closing of chromatin and affects the temporal 
patterns of gene expression. 

The temporal patterns of gene expression in for-
agers’ and nurses’ brains show some similarities. For 
example, in the nocturnal species C. floridanus, while 
half of the 24-hour rhythmic genes in nurses’ brains were 
unique, the other half showed similar 24-hour oscilla-
tions in both nurse and forager brains, with no difference 
in phase or amplitude, and a peak activity during rest. 

Intriguingly, these C. floridanus genes are involved in gly-
cosylphosphatidylinositol–anchor biosynthesis; the same 
process regulates sleep in insects, fish, and humans [66]. 

As ants shift tasks, the rhythmic gene expression can 
shift in periodicity. More than two hundred genes of C. 
floridanus, including the clock genes period and shaggy, 
oscillate every 8 hours in the nurses’ brains; the same 
genes show a 24-hour rhythm of expression in foragers’ 
brains [23]. In P. occidentalis, like C. floridanus, foragers’ 
brains show a 24-hour rhythm in period expression but 
nurses do not [21]. The study with P. occidentalis tested 
only for the presence of near 24-hour rhythms of gene 
expression in both foragers and nurses; the possibility of 
shorter ultradian patterns in period expression in P. oc-
cidentalis nurses remains to be investigated. More work is 
necessary to delineate the underlying mechanism and 
the role of social cues. 

The plasticity of an ant’s circadian clock may influence its 
capacity to switch tasks. The temporal patterns in the 
expression of such differentially expressed genes (DEGs) 
over a 24-hour day have been characterized for only one 
species C. floridanus. The task-associated DEGs in C. 
floridanus show a highly synchronized daily fluctuation in 
their expression levels in foragers’ brains but not in nurses  
[67]. This finding in C. floridanus is consistent with the 
results obtained in P. barbatus; the expression of foraging, a 
task-associated DEG, shows circadian oscillations in for-
agers’ brains but not in nurses [24]. 

Conclusion 
The cellular machinery that produces biological rhythms 
in ants is plastic. The temporal patterns of gene ex-
pression, which can shift in periodicity when ants change 
tasks, seem to depend on the rhythmic properties of the 
abiotic cues and the social cues associated with a parti-
cular task environment. The plasticity of the ant’s clock 
raises interesting questions about the role of biological 
rhythms in task allocation. We highlight two sets of 
questions:  

1. Circadian rhythms in neurotransmitters: Little is 
known about the mechanisms that lead social cues to 
influence the expression of clock-controlled genes in 
ant brains. Ants show task-associated differences in the 
expression of biogenic amine receptor genes [68] and 
in the levels of neurohormone (reviewed in [69]). 
Several neurotransmitters, especially biogenic amines, 
also play a role in synchronizing insect clocks [19,20]. 
This suggests that there may be daily rhythms in the 
neurotransmitter activity that influence behavior.  

2. Colony variation in temporal patterns of activity: 
Colonies vary in how daily temporal patterns of 
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activity shift in response to changing conditions. For 
example, red harvester ant colonies differ consistently 
in how they regulate daily foraging in response to 
changing humidity; some P. barbatus colonies reduce 
foraging in dry and hot conditions, sacrificing food 
intake to conserve the water lost while outside the 
nest, while other colonies do not [70]. Colonies that 
forage less when it is hot and dry outside were more 
likely to have offspring colonies than colonies that did 
not [71], demonstrating that natural selection can act 
on how colonies regulate activity. Variation among 
colonies in activities with important ecological func-
tions may be associated with colony-specific differ-
ences in the phase, amplitude, or periodicity with 
which genes are expressed inside foragers’ brains. 

The temporal patterns in task performance depend on 
the rhythmic physiological state of the individual ants 
performing a task, as well as the patterns of interaction 
among ants within and between task groups. The 
rhythmic state of an ant, arising from an ant’s internal 
clock-controlled processes, is plastic and can be influ-
enced by changing colony needs. The plasticity of the 
biological clock in individual ants influences their ca-
pacity to switch tasks, which in turn leads to plasticity in 
the task performance of the colony. 
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